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CHAPTER I 

INTRODUCTION 

During a radar cross section (RCS) measurement, the target is held in place 

using a support structure which can affect the accuracy of the measurement, es- 

pecially when the target under test has a relatively low RCS. Therefore, a support 

structure which has a low RCS is desired for scattering measurements. Among 

the commonly used structures are metal ogival pedestals, Styrofoam columns and 

dielectric straps. These three structures are shown in Figures 1 through 3, respec- 

tively. 

The metal ogival pedestal is commonly used as a target support because it can 

hold heavy targets and has a relatively low RCS, especially at high frequencies. 

Lai and Burnside [1,2] have shown that the RCS of a metal ogival pedestal is 

directly proportional to the square of the wavelength of the incident field and is 

approximately 20 dB below a square meter at 1 GHZ. Thus, metal ogival pedestals 

do not appear to be a good choice for supporting targets at low frequencies; i.e. 

below 1GHz. For a horizontally polarized incident wavefront the RCS of Styrofoam 

columns is approximately equal to that of metal ogival pedestals while for vertical 

polarization the RCS of Styrofoam columns is higher [2]. Furthermore, to support 

heavy targets the volume of the Styrofoam columns should be rather large. Thus, 

Styrofoam columns do not appear to be a good choice either. Gupta, Lai and 

Burnside [2,3] studied the scattered fields from dielectric straps and concluded that 

1 



SIDE VIEW TOP VIEW 

(b) 

Figure 1: (a) Metal ogival pedestal. (b) Target on metal ogival pedestal 
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Vertical dorip Shntod d u i g n  

(b) 

Figure 2: (a)Styrofoam column. (b)Target on a Styrofoam column. 
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Figure 3: (a) A Dielectric strap. (b) Target attached to straps. (c)Target hung 
by straps. 
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they perform much better at lower frequencies [2,3]. One advantage of the straps is 

that when the plane wave illunlinates the straps at or near edge-on incidence, the 

RCS of the strap is quite low at low frequencies. Even though its RCS increases 

when the frequency increases, it is still lower than that for metal ogival pedestals. 

As a result,it is possible to align the straps with the low RCS direction of the 

target, so the minimum RCS of the target coincides with the minimum RCS of the 

strap. In addition, the straps can be built using composite material so they can 

handle very heavy targets. Therefore, the dielectric straps appear to be a good 

choice for supporting targets at low frequencies. 

The straps can be used to hold a target using at least two basic methods. 

The first one is by connecting the straps directly to the target as shown in Figure 

3(b). The second method is by wrapping the strap around the target as shown 

in Figure 3(c). The second method appears to be easier in that the target does 

not have to be modified. Both methods are expected to have a relatively low RCS 

when used as a target support. If the strap is directly attached to the target, 

the RCS of the support will be dependent on how well the strap is connected 

using a low scattering attachment. One the other hand, the second approach 

is dependent on the scattering level of the strap as it surrounds the structure. 

In order to evaluate the scattering level for this type of attachment, this report 

will determine the scattering performance of a thin dielectric strap surrounding a 

perfectly conducting structure. 

P 

The method of analysis can be outlined in the following steps. First, the cur- 

rent induced within the strap by an incident plane wave is found by employing the 

method of moments and the Uniform Geometrical Theory of Diffraction (UTD). 

After the current is found, the UTD is used in writing an integral for the radiated 

field based on the strap currents. The integral is simplified by using a station- 

3 



ary phase point integration method. Then, the resulting expression is evaluated 

numerically. This method is used to evaluate the RCS of a strap surrounding a 

perfectly conducting structure, and reasonable agreement was found between the 

computed and the measured results. 

The different chapters of this report are as follows. In Chapter 11, a method is 

developed to compute the scattered fields from a thin dielectric strap surrounding 

a perfectly conducting convex surface. In Chapter 111, the method is employed to 

solve for the backscattered field from a strap surrounding a perfectly conducting 

convex structure. Then, in Chapter IV some computed as well as measured results 

are presented. The conclusions are given in Chapter V. 

6 



CHAPTER I1 

SCATTERING FROM THIN DIELECTRIC STRAPS 

SURROUNDING A PERFECTLY CONDUCTING CONVEX 

SURFACE 

2.1 Introduction 

In this chapter, a method is presented to find the electromagnetic fields scat- 

tered by a thin dielectric strap surrounding a perfectly conducting convex surface. 

First, a two-dimensional method is presented to determine the current excited 

across the width of the strap by an incident plane wave. This current is then 

extended to the three-dimensional case using high frequency techniques. Next, 

expressions for the fields radiated by a current element on a perfectly conduct- 

ing convex surface are given using the Uniform Geometrical Theory of Diffraction 

(UTD). Finally, the total scattered field is written in the form of an integral of this 

current over the strap. The integration is then simplified by using a stationary 

phase technique. 

Some of the assumptions which are used throughout this report are the follow- 

ing. The radius of curvature of the surface, s, is large compared to the wavelength 

of the incident wavefront, and the thickness, T, of the strap is much smaller than 

the wavelength. The dielectric material of the strap has a relative permeability, 

p r  = 1, and an e z p ( j o t )  time dependence is assumed and suppressed. Whenever 

the words “large” or “small” are used, they iiiean large or small relative to the 

7 



wavelength. 

2.2 The Current Induced in the Strap 

One way to find the electromagnetic field scattered by a strap is to find the 

current induced within the strap by the incident electromagnetic wave. In this 

section, a method to find that current is described. In this study, a perfectly 

conducting surface, S, is surrounded by a strap of width, L, and thickness, T, as 

shown in Figure 4(a). 

The first step in evaluating the current in the strap is to divide the strap into 

several smaller sections as shown in Figure 4(b). Then, the current inside each 

section is determined by assuming that the section under consideration is part of 

an infinitely long strap which exists over a ground plane tangent to the surface S 

at the center of the section (see Figure 4(c)). One can see that three assumptions 

are used here. The first one is that each section can be treated alone, which implies 

that there are no interactions between the different sections. The second one is 

that each section exists over an equivalent ground plane. The last one is that the 

current inside a section can be found by considering that section to be part of an 

infinitely long strap. These three assumptions can be justified as follows. 

The first assumption is based on the fact that, diffraction is a local phe- 

nomenon, which means that the scattering from any particular section is simply a 

function of the characteristics of that section only. This implies that the current in 

each section is a function of the characteristics of that section only. Hence, one can 

treat each section alone to find it8s associated current. The second assumption is 

made because the radius of curvature is large and the sections are small, such that 

each section appears to be mounted over a planar surface instead of a curved one. 

The third assumption is used because each section is part, of a continuous strap. 

8 



Figure 4: (a) The surface, S, surrounded by the st8rap. (b)  The strap divided into 
sections. (c) Infinitely long strap existing over a ground plane tangent to the 

surface, S, at the section under consideration. 
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So, the two terminations of each section do not contribute to the current. There- 

fore, the factors which affect the current in the section under consideration are the 

same as the factors which affect the current in an infinitely long strap. Based on 

the Geometrical Theory of Diffraction (GTD), these factors are the incident field, 

the diffraction from the two original edges forming the width of the strap and 

the interactions between these two edges. Therefore, the current in any particular 

section can be found by solving for the current in an infinitely long dielectric strap 

mounted over a ground plane which is tangent to the surface at the center of that 

section. 

Now, let us find the current in the infinitely long strap by using the moment 

method technique. Consider an infinitely long strap mounted on a ground plane, 

see Figure 5(a), and excited by a plane wave which is given by 

3 jk(Xcos4s in8  + Ysin4sin8 + Zcos8) E = e  

where X , Y , Z , 6  and # are shown in Figure 5 ,  and IC is the wavenumber of the 

incident field. The goal is to find the equivalent current inside the strap due to 

the incident plane wave. The first step is to get rid of the ground plane by adding 

the image of the structure. That is, double the thickness of the strap and add the 

image of the incident plane wave. By doing so, one obtains the problem shown in 

Figure 5(b). This problem can be solved by using the method of moments [4,5]. 

In the method of moments, the cross section of the dielectric strap is divided into 

cells which are small enough so that the electric field int,ensity is nearly uniform in 

each cell. The electric field intensities within each cell are initially considered to be 

an unknown quantities and a system of linear equations is generated by enforcing 

at the center of each cell that the total field must equal the sum of the incident 

10 



GROUND PLANE 

Y 

Figure 5: (a) An infinitely long strap over a ground plane. (h) The result of (a) 
after removing the ground plane and adding the image of the incident wave and 

the strap. (c) The strap widt,h divided into cells. 
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and scattered fields. This system of equations is then solved to obtain the electric 

field intensity in each cell. The equivalent electric current in each cell is then given 

by 

The above solution requires, as an input, the incident field at the center of 

each cell. For our particular problem the incident field at the strap mounted over 

the surface, S, shown in Figure 4 is different from the field incident at the strap 

mounted over an infinite ground plane as shown in Figure 5 .  This difference is 

related to the surface curvature at the location of the strap on the structure. This 

field is found by using high frequency techniques. First, the far field radiation by 

a source located on the surface, S, is found. Then, reciprocity is used to find the 

field on the surface, S, due to a source located in the far field. This field is used 

to find the current in the short dielectric strap section as described earlier. 

2.3 Scattering from the Strap 

At this point of our development the equivalent electric current in the strap 

is known. The radiated (scattered) electric field can be written using 

E ( P )  = / // dE(P/Q')  dv' 

where &(P/Q') is the electric field at the observation point, P, due to an in- 

finitesimal electric current moment at the source point, &'. By using UTD [6] one 

can find d e ( P / Q ' ) .  This is the t,opic of the next section. 

2.3.1 Radiation From Sources Over Convex Surfaces 

Consider an infinitesimal electric current moment, dj5( Q'), located on a per- 

fectly electric conducting convex surface as shown in Figure 6. According to geo- 

12 



(a) shadow region (b) lit region 

Figure 6: Ray paths in the shadow and lit regions. 
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metrical optics, the space surrounding the source is divided into an illuminated(1it) 

and shadow regions by a plane tangent to the surface at Q‘. This plane is referred 

to as the shadow boundary for that source location. The present formulation of the 

uniform GTD solution leads to separate representations for the elemental radiated 

field dE(P/Q‘)  in the shadow and lit regions, respectively. However, these different 

representations have been shown to match exactly in polarization, amplitude and 

phase at the shadow boundary [7]. 

The unit vectors used in this treatment are shown in Figure 6. The unit 

vector, i?, defines the radiation direction. At the source point (Q’), fi‘ is the unit 

surface normal vector, i!‘ is the unit tangent vector of the geodesic path, and the 

binormal unit vector is given by &’ = i!’ x 6’. Similar unit vectors are introduced 

along the geodesic path. Thus at the diffraction point (Q), ii is the unit surface 

normal vector, t̂  is the unit tangent vector of the geodesic path and the binormal 

unit vector is given by & = t̂  x ii. Note that 6~ is the unit vector normal to i? 

and lies in the plane containing 6’ and i. Also, t̂ i is a unit tangent vector to the 

surface, S, at Q‘, and it lies in the plane containing ii‘ and s^. The binormal unit 

vector is defined by &i which is given by = ii x ii’ or &i = ŝ  x iii. 

In the lit region, one may express the elemental electric field produced by 

dp(Q‘) in a ray optical format as follows [6]: 

-jks 
where Ls- represents the spherical wave associated with the point source at Q’. 

The quantity, C, is given by 

- j k  
47r - 

c = 

14 



Likewise, one may also express the field in the shadow region as follows [6]: 

- =L The explicit forms of the radiation dyadic transfer functions, T and T ,  are given 

by 161 

TL = ZosinBi{it'itL(HL + T:FcosBi) +ii'bT,F) 

and 

where t is the geodesic arc length from Q' to Q.  The distance between the diffrac- 

tion point, Q, and the observation point, P, is given by sd and 2, is the free space 

intrinsic impedance. The quantities ( H L ,  H, S L  and S) are referred as the hard 

(HL; H) and soft ( S A ;  S) Fock functions which describe the radiation patterns of 

a source on a convex surface. These soft and hard Fock functions are plotted in 

Figure 8 and defined by [6]: 

(2.11) 
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The Fock type Airy function is given by 

(2.12) 

with wi(7) being the derivative of w2(7) with respect to 7 .  The Fock parameter, 

6, for the shadow region is given by 

with 
1/3 m ( t ) =  I [y] . 

(2.13) 

(2.14) 

Here p g ( t ‘ )  is the surface radius of curvature along the ray path at t’. The Fock 

parameter, tL,  for the lit region is given by 

(2.15) L r  [ = -  m (&)cos@ 

with 

(2.16) m L r  (Q ) = m(Q’) [ 1 +  T:cos 2 B ]  a -1/3 

and cos 88 = ii’ - i. The torsion factor, To, is given by 

where T(Q‘) is the surface ray torsion at Q‘. One may show via differential geom- 

etry that [7] 

and 

(2.18) 

(2.19) 

where R1(Qr) and R2(Q’)  denote the priiicipaI surface radii of curvature at Q‘, 

and a’ is the angle between t̂ ’ and ?; as shown in Figure 9. Here i i  and +; are the 

16 
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Figure 7: Perspective view of a surface diffracted ray tube (enlarged view). 

principal surface directions at Q’ associated with R1( Q’) and R2( Q‘), respectively. 

The function, F, is given by 

s L  - H L  cos ei F =  
1 -f TZ cos2 gi 

’ (2.20) 

The angles, d&, and d$ = ”1”_(6Q1, are shown in Figure 7. Note that pf is the wave 

front radius of curvature, or the caustic distance, of the surface diffracted ray in 

the 6 direction at Q and may be calculated via differential geometry. 

p2 

Now, let us go back to Equation (2.2) and write it in the following form: 

where 

t’ is the integration variable along the width of the strap 

17 
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Figure 8: Plots of the radiation Fock functions. 

n 

b' 

Figure 9: Principal surface direct.ions at. the source location. 
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4' is the integration variable along the length of the strap 

&*(4') contains the current and the radiation phase variation along the 

strap 

ejt 'p contains the radiation phase variation along the width of the strap. 

p(4', t ' )  contains the remaining variables and constants. It does not contain 

any phase variation related to $', and 

r0 is the distance from the center of the structure to the observation point. 

The triple integral in Equation (2.2) is converted into a double integral in 

Equation (2.21) because the strap is very thin compared to the wavelength such 

that the current is uniform across its thickness. The latter integral can then be 

evaluated numerically; however, the use of the stationary phase method makes it 

niuch easier to evaluate as described in the next section. 

2.3.2 Stationary phase integration method 

In this section, the stationary phase integration method [8] is summarized. 

Let us consider the following integral: 

(2.22) 

where 

4 is a real variable 

K. is real, positive and large 

@( 4) is a real, continuous function with continuous derivatives for a 5 4 5 b, 

and 
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F ( 4 )  may be a complex function, but it is slowly varying and well behaved 

in the range of integration. 

Let 

the stationary phase point, and the integral, I, can be approximated by 

= 0 for a < 4, < b, and 4, is not close to a and b. Then, q5s is called 

(2.23) 

where sgn (2) = -1 if 2 < 0, and sgn (z) = 1 if t > 0. The above results were 

found by dividing the integral in Equation (2.22) into three integrals and then 

by using an asymptotic approximation to evaluate these integrals. The first term 

in Equation (2.23) corresponds to the contribution froin the stationary point, +=. 
The other two terms correspond to the contributions from the end points of the 

integration a and b. If the function, @(4), has more than one stationary point in 

the interval ( a ,  b), one needs to sum the contributions from each of the stationary 

points. If the integration in Equation (2.22) is a closed loop integration then, there 

are no end point contributions. 

In using the stationary phase integration method to simplify the integral in 

Equation (2.21) one needs to split the integral into two integrals. One of these 

two integrals covers the part of the strap which is excited directly by the incident 

wave. The other one covers the part of the strap which is excited by a creeping 

wave in that the strap is shadowed by the structure. Apparedy, each integral 

contains one stationary point without an end point.. 

In the next chapter, a method to find the scattered electromagnetic field froin 

a strap surrounding a perfectly conducting convex structure is developed based on 

the current found in this chapter. 
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CHAPTER I11 

BACKSCATTERED FIELDS FROM A DIELECTRIC STRAP 

SURROUNDING A CONVEX STRUCTURE 

3.1 Introduction 

In this chapter, the method described in Chapter I1 is used to evaluate the 

backscattered fields from a thin dielectric strap wrapped around a structure such as 

shown in Figure 10. Recall that the relative permeability of the strap is assumed 

to be unity; while, the dielectric constant of the strap is c r ,  For simplicity the 

pointing vector of the incident wavefront lies in a principal plane of the structure; 

i.e., the X Z  plane in Figure 10. The backscattered fields are computed in the E- 

plane (XZ plane in Figure 10). The H-plane backscattered fields from a thin strap 

wrapped around a structure are extremely low and one does not need to worry 

about their effect on the a measurement in that the worst case E-plane scattered 

fields set the measurement error level. This claim is justified at the end of this 

chapter. 

The techniques developed here can be used to treat an arbitrary convex struc- 

ture; however, the remaining discussion will be devoted to the ogive. The ogive 

is interesting in that it represents a low level scat,tering target; thus, one can ob- 

serve the effect of the strap scattering for a pract,ical case. This will become more 

apparent in the next chapter, when the results are examined. 

In the case of a strap wrapped around an ogive there are t2wo different mecha- 
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Figure 10: Structure surrounded by a dielectric strap. 
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nisms leading to the currents excited on the strap and then to the scattered fields 

from the current elements. The first one is the direct excitation which occurs in the 

lit part of the strap. The second one is the creeping wave excitation which occurs 

in the shadowed part of the strap. These two mechanisms are treated separately. 

3.2 Description of the Ogive 

The ogive is used in this study to represent a general convex structure. It is 

shown in Figure’10 and can be described by knowing the two dimensions of the 

ogive, a and b, as shown in Figure 11. The vector R(+,Z)  which connects the 

origin and a point on the surface of the ogive is then given by 

where 

b2 + a2 
2a 

T =  , and (3.3) 

c = ~ - a .  (3.4) 

Another, convenient, way to describe the ogive is the following: 

where u is as shown in Figure 11, and from which one can see that 

2 
sin(u) = - . 

T 

The advantage of the second definition is that the derivative of R with respect 

to u is tangent to the surface of the ogive and perpendicular to 4. Note that 6 
is also tangent to the surface of the ogive at any point. So, the two tangents 

perpendicular to each other at any point on t,he surface of the ogive can be easily 
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Figure 11: (a) An ogive described by q5 and 2. (b) An ogive described by q5 and v. 
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found. These two tangents are enough to define the tangent to the surface at any 

direction. They are as follows: 

- 

t;. = Ifi,l R4 = $ = -  sin(+)? + cos(+)G , and (3.7a)  

(3.7b) +. R, 
e - IR,J 

t - -=-- = - sin( v) cos( 4)s - sin( v) sin( +)G + cos( v); 

where 
- aR Rd = - , and a+ 

R , = % .  aR 

(3.7c)  

(3 .7d)  

3.3 Backscattering From the Strap 

Following the method described in Chapter I1 let us set up the integral for 

the radiation by the current induced in the strap as follows: 

The different constants and variables which appear in the above equation were 

defined earlier in Chapter 11. The stationary phase integration method is used to 

evaluate the above integral with respect to 4'. The stationary points are located 

at the top and the bottom of the ogive; i.e. the points closest to and farthest 

from the transmitter/receiver antenna. The one at. the bottom is shadowed by the 

ogive; while, the other one is not. This makes the integral formulation at each 

point different from the other one. Therefore, one must deal with each stationary 

point using a different method. 

25 



3.3.1 The Lit Part of the Strap 

In order to find the backscattered field from the strap, one needs to find the 

current within the strap excited by the incident plane wave. In order to find that 

current let us use the moment method approach described in Section 2.2. That 

method requires, as an input, the value of the incident field at the location of each 

cell in the strap. This can be done as follows. Consider a current moment located 

at the top of the ogive and radiating in free space as shown in Figure 12. The 

radiated field can be found using the formulas given in Section 2.3.1. So for an 

observation point located in the XZ plane, the radiated field is given by 

where 

T L  = 2, sin tJiHL( -m(Q') cos 8')ii'ii~ , and (3.10) 

dp( Q') = dp( Q')h' . (3.11) 

Then, one finds that 

e- j k v  
(3.12) 

-jk 
4A S 

d E  N - Z,dp( Q') sin 8'HL( -m( Q') cos Bi) - jiL . 

The different variables in the above equation were defined in Chapter 11. Now, 

by using reciprocity, one can find the field on the surface due to a plane wave 

incidence. By doing so, the electric field at the surface,S, is given by 

(3.13) H ~ ( - ~ ( Q ' )  cos ez) sine i e jka  sin 8 cos 4 ' e j k ( Z  c,os 8) 

The above equation is used in the moment method approach to find the current 

in the strap. That current is then used to find the backscattered field from the lit 

part of the strap. 
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The radiated electric field by the current in the lit part of the strap is as 

follows: 

where 

Zo is the intrinsic impedance of free space 

T is the thickness of the strap 

k is the wave number of free space 

(3.14) 

R is the distance from the source point to the observation point 

f$b is the angle which defines the separation boundary between the shadowed 

and the lit part of the strap, and 

.J(c$~,~?) is the current in the strap. 

Equation (3.14) can be written as 

where 

8 is the observation angle measured from the Z-axis, and 

ro is the distance from the ogive to the observation point. 

Now, the current can be described by 

J(+',t ')  = J1(+ I ,t I ) e  jkasinOcosq5' 

(3.15) 

(3.16) 
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Then, Equation (3.15) can be written in the following form: 

(3.17) 

with 

-jk P($',i') = ---Z0sinBiHL(-m(Q') COS 6Ji)TaJ1($',t')fiL ( 3 . 1 8 ~ )  
4'KTo 

n = 2kasin8 (3.18b) 

a(4') = cos 4' , and ( 3 . 1 8 ~ )  

/3= kcos8 . (3.18d) 

Now, the above integral can be evaluated using the stationary phase integra- 

tion method. First, the stationary phase point is found from 

f$($') = cos 4' ( 3 . 1 9 ~ )  

@'(+') = - sin 4' , and (3.19b) 

a"(+') = - cos 4' 

where the stationary point is given by 

( 3 . 1 9 ~ )  

(3.19d) 
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In this case, the stationary points are given by = 0 , ~ .  Since the interest here 

is in the lit part of the strap, +st = 0 is the only stationary point to be evaluated 

here. Using the results of section 2.3.2, one finds that 

which can be written as 

E U ( ~ )  = , / F e j 2 k a s i n l 9 , - j k r 0  Ica sin d - L / 2  F ( 0 ,  t r )e j t 'bdtr  . (3.21) 

The above integral can then be easily evaluated numerically across the width of 

the strap. 

3.3.2 The Shadowed Part of the Strap 

According to Equation (2.5) the radiation by a current element in the shad- 

owed part of the strap can be written as 

where 

J(+',t') is the current in the strap. This current is found in a similar way 

to that used for the current in the lit part of the strap. The details are 

given at the end of this section. The other factors in Equation (3.22) 

are defined as follows: 

= 2, [ f i ' f i H ( [ )  + ii'6ToS([)] ) but because of t,he symmetry the 6 compo- 

nent cancels out; therefore, one needs to consider 
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f i  and p i  are the ray divergence factor and the caustic distance, respec- 

tively. They are found using the cylinder perturbation method [9]. See 

Appendix A for details. 

pg(Q)  and ps(Q1) are the surface radii of curvature in the i and direction, 

respectively. They are given by Equation (2.17). 

t is the geodesic path length, which is given by 

(3.233) 1 1  t = -Tecos$ - t  

t' and 4' define the position of the source, which are shown in Figure 13. 

sd is the distance between the diffraction and the observation point, which 

is given by 

Sd = To + (T - a)Sill8COS4' ( 3 . 2 3 ~ )  

T~ is the distance from the center of the ogive to the observation point, and 

finally 

( is given by 
Q m ( t ' )  

Pg ( t ' ) = J dtl- , and 
9' 

(3.23d)  

(3.23e)  

Using this approach, the shadow region field can be written as 

where 

( 3 . 2 5 4  
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Figure 13: Creeping wave radiation from a source mounted on an ogive. 
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(3.253) 

( 3 . 2 5 ~ )  

(3.25d) 

(3.25e) 

The function H ( [ )  has a phase dependence on 4'; however, it is small, and it will 

not affect the stationary phase integration result. 

Now, let us use the stationary phase integration method to evaluate the in- 

tegral in Equation (3.24) with respect to 4'. First, one finds the stationary phase 

point using the following expressions: 

a($') = cos 4' ( 3 . 2 6 4  

a'(q5') = - sinq5' , and ( 3.26 b )  

and 

a"(4') = - cos 4' . ( 3 . 2 6 ~ )  

The stationary point is at @'(4st)  = 0 which means that $st = 0 , ~ .  But- since the 

shadowed part of the strap is being studied here, d8t = K. Then, one finds that. 
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which can be written as 

(3.28) 

The above integral is then evaluated numerically. 

The current I ( d ' , t ' )  is found using the moment method approach described 

in Section 2.2. In using that method, one needs to find the excitation for each 

cell in the strap; this can be done as follows. Consider an electric current moment 

located at the bottom of the ogive radiating in free space as shown in Figure 12. 

According to Equations (2.5), (2.19) and (3.23a), the electric field due to a current 

moment at the stationary point and an observation point located in the X Z  plane 

is given by 

In the far field, the above equation can be written as 

with 

t = re - t' , and 

(3.30) 

(3.3 1 b) 

s d = r o - ( r - a ) s i n 8  . (3.31~) 

One can use reciprocity to find the electric field at the location of the electric 

current moment due to a plane wave incidence. It, is found to be given by 

(3.32) 
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The total backscattered electric field is then given by 

E ( P )  = E y P )  + E'(P) . (3.33) 

In Equations (3.21) and (3.28), one can see that, when 8 = Oo, the field 

becomes singular which means that the equation is not valid at or near that caustic 

direction . This is true because at 8 = Oo, all the current elements around the 

strap contribute to the backscattered field. In order to find the field at or near this 

caustic direction, one needs to integrate the current around the whole strap. This 

can be done as follows. When 8 = 0' the electric field radiated by the current in 

the strap can be written as 

Let R = ro - t'; then, one finds that 

From the symmetry of the structure one can see that the backscattered electric 

field in 3i. direction can be written as 

Also, one can easily see that J ( # , t ' )  can be written as 

J (4 ' ,  t') = J ( 0 ,  t ' )  cos(#) (3.37) 

Thus, one obtains that 

and 

(3.39) 
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The above integral can again be evaluated numerically across the width of the 

strap. 

Let us now justify the claim stated at the beginning, the backscattered H- 

plane pattern is very low and does not need to be considered. The backscattered 

field from the strap described in equations (3.21) and (3.28) depends on the elec- 

tric current at the stationary points. That current is a function of the incident 

electric field at the stationary points. In the H-plane backscattered field case, the 

stationary points are at 4' = 7r/2 and 4' = -7r/2. The electric field is very weak at 

these stationary points because the incident electric field is tangent to the surface 

of the, and the strap is very thin. This means that the electric current at 4' = 7r/2 

and 4' = -7r/2 is almost zero, hence the backscattered field in the H-plane is very 

low. 

In this chapter, the method presented in Chapter I1 was used to solve for 

the backscattered fields from a strap surrounding a structure. This technique was 

applied to an ogive simply to provide results for a specific case. The method split 

the solution into two parts. One part corresponds to the backscattered field from 

the lit part of the strap, and the other one corresponds to backscattered field 

from the shadowed part of the strap. The above method does not work at or near 

8 = O", because it is a caustic for the backscattered field such that stationary phase 

dose not apply. Therefore, at that point the backscattered field was evaluated by 

integrating the current over the whole strap. In the next chapter some computed 

and measured results are presented. 
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CHAPTER IV 

RESULTS AND EMPIRICAL DESIGN FORMULAS 

4.1 Measured and computed results 

In this section, the results of chapter I11 are used to compute the E-plane RCS 

of a strap wrapped around an ogive as shown in Figure 14. First, some computed 

and measured results for a particular strap are compared in order to demonstrate 

the validity of this theoretical approach. Then, some individual computed terms 

are presented to demonstrate the way in which the solution works. 

Figure 15 shows the RCS of a dielectric strap wrapped around an ogive versus 

frequency for nose-on incidence (0 = 0'). The strap has L = 2", T = 0.004" and 

cr = 2.3. The dimensions of the ogive are a = 2.37" and b = 18". Note that 

at 4GHz the RCS of the strap is about -65 dBsm. The RCS increases with the 

increase in frequency; however, it is still low at high frequencies. In Figure 15, the 

measured RCS is also shown which show reasonable agreement with the calculated 

ones. To measure the RCS of the strap, it was wrapped around an ogive and 

mounted in the OSU compact range facility as shown in Figure 16. First, the 

RCS of the whole structure was measured from 2 to l8GHz every 10MHz. Next 

the phase center was taken to be at the middle of the strap; then sniootliing was 

used to isolate the RCS of the strap. The measured result which appears in Figure 

15 was obtained using a 201 point smoothing. A 101 points smoothing gives the 

result shown in figure 17. One can see that. the 201 point smoothing gives the most 
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Figure 15: Nose-on RCS of a strap versus frequency with 201 point smoothing. 
a=2.37", b=18.0", L=2", T=0.004" and E,. =2.3. 
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Figure 17: Nose-on RCS of a strap versus frequency with 101 point smoothing. 
a=2.37”, b=18.0”, L=2”, T=0.004” and +=2.3. 
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reasonable results. Therefore, the rest of the measured results are presented using 

a 201 point smoothing. The time domain results obtained from the measured data 

is shown in Figure 15(a). It indicates that the strap scattering is dominated by 

the front and back edges. Note that the two edges of the strap scatter roughly the 

same level, which causes the lobe structure observed in the frequency domain. 

Figure 18 shows the measured as well as the computed RCS of the tip of the 

ogive. The computed RCS of the tip of the ogive was found by using the following 

physical optics formula: 
r 4  u(O) = __tan  (a) 

4k2 

where a is the half cone angle of the ogive. One can note that the measured 

RCS does not agree with the computed one near the upper and lower ends of the 

frequency spectrum because the measured result was obtained using the smoothing 

approach mentioned earlier. Note that smoothing does not work well at the ends 

of the spectrum because one can’t center the smooth data around the ends. In 

this case, the end values are found using 101 points to the right or left of the end 

point. 

Figures 19 through 26 show the computed as well as measured RCS of the strap 

versus frequency for observation angles from 5 to 40 degrees with an increment of 

5 degrees. The quality of the measured results decreases with the increase in the 

observation angle, 8, in that as 8 increases the return from the strap gets smaller 

and smaller. This make it hard to separate the RCS of the strap from the noise. For 

Figures 19 through 26, the RCS was computed without including the contribution 

from the shadowed part of the strap in that. the cylinder perturbation method does 

not work well for thin ogives, such as the one used for the measurement. However, 

this did not have any considerable effect on the results. This point well be discussed 

42 



m n 
7 

7 
c3 
6 
I 

. . . . . . . . 

FREQUENCY IN GHZ 
Figure 18: Nose-on RCS of the tip of the ogive versus frequency with a=2.37" 

and b=18.0". 

later in this section. Although the computed results in Figures 19 through 26 were 

found using this simple approach, reasonable agreement was obtained in each case. 

In order to demonstrate how the solution works, some computed results for 

different straps are presented. Figure 28 shows the backscattered field from a 

dielectric strap over a ground plane, with the geometry shown in Figure 27. The 

backscattered field is computed at 6GHz, and the dimensions of the strap are 

L = 2.5", T = 0.004" and = 4.0. The null which appears at 8 = 90° is expected 

for a thin strap because the incident electric field and its image field cancel at the 

ground plane, which means that the strap is not significantly excited and hence 

does not backscatter significantly. A similar null is expected in the RCS pattern 

of the strap wrapped around the ogive. 

Figures 29 through 31 are for an ogive wit,h dimensions, a. = 14.7G" and 

b = 29.53". Figure 29 shows the RCS of a strap with L = 3.G9", T = 0.008" and 
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Figure 19: RCS of a strap versus frequency with a=2.37", b=18.0", L=2", 
T =O .004" and E,. = 2.3. 
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Figure 20: RCS of a strap versus frequency with a=2.37", b=18.0", L=2", 

T=0.004" and eT=2.3.  
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Figure 22: RCS of a strap versus frequency with a=2.37”, b=18.0”, L=2”, 

T=0.004” and eT=2.3. 
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Figure 25: RCS of a strap versus frequency with a=2.37", b=18.0", L=2", 
T=0.004" and e,=2.3. 
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Figure 26: RCS of a strap versus frequency wit.h a=2.37", b=18.0", L=2", 
T=0.004" and eT=2.3.  
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Figure 27: Back scattered field from dielectric strap over a ground plane with 
L=2.5", T=0.004", ~,=4.0 and f=GGHz. 
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Figure 28: Dielectric strap over a ground plane. 
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0.004" and cT=4.0 and 2.0 . Figure 29(a) shows the RCS of the lit part of the 

strap; whereas, Figure 29(b) shows the RCS of the shadowed part of the strap. 

The total RCS of the strap is shown in Figure 29(c). Figure 30 shows the RCS of 

a strap with L = 2.36", T = 0.004" and 0.008", and = 4.0. As mentioned in 

chapter 111, one can clearly see that the RCS of the lit and shadowed parts of the 

strap are not valid at or near 8 = 0'. Therefore, at 8 = 0' the RCS of the strap is 

evaluated by integrating the current all around the strap. In the total RCS of the 

strap the, results are only shown outside the caustic region. 

Figures 29 and 30 show that the RCS of the strap can be reduced by reducing 

the thickness and/or the dielectric constant of the strap. This means that a tradeoff 

can be made between the RCS of the strap and its physical properties, such as 

the maximum load that it can handle which is influenced by the thickness of the 

strap and its dielectric constant. An empirical formula which can help in making 

such a tradeoff is given in [2]. One can easily see that the nulls which appear in 

Figures 29 and 30 (except for the one at 8 = 90') are due to the contributions 

from the front and back edges of the strap coming out of phase. Figures 29 and 30 

also show that changing the width of the strap does not affect the RCS level but 

it affects the number of nulls appearing in the RCS pattern. 

Figure 31 shows the nose-on RCS of the strap versus frequency. The RCS 

level of this strap is higher than the one in Figure 15, the main reason being that 

the dimension 'a' in the ogive of Figure 31 is equal to 14.76"; while, 'a' in Figure 

15 is equal to 2.37". This means that the strap of Figure 31 is much longer than 

the one of Figure 15, which explains the difference in the RCS level. 

Figure 32 shows the RCS of tnhe same strap used in the measurementn (i.e. 

L = 2", T = 0.004" cr = 2.3, a = 2.37" and b = 18") at, a frequency of 4GHz. 
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Figure 29: RCS of a strap wrapped around an ogive with a=14.76", b=29.53", 
L = 3.69" and f= 4G Hz . 
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Figure 29: Continued. 
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Figure 30: RCS of a strap wrapped around an ogive with a=14.76", b=29.53", 
L = 2.36" and f = 4 G H z . 
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Figure 30: Continued. 
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Figure 33: RCS of a strap wrapped around an ogive with a=2.37", b=18", 
L=2.0", T=0.004", ~ , . = 2 . 3  and f=lOGHz. 
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The creeping wave contribution to the RCS of the strap was not included because 

the cylinder perturbation method gives inaccurate results for such a thin ogive in 

that for a thin ogive the increase in the length of the creeping wave path with the 

increase in the observation angle, 8 is larger than what the cylinder perturbation 

method can handle. Therefore for thin ogives, the cylinder perturbation method 

gives good results only for small 8. But for small 8, the solution for the shadowed 

part of the strap is not valid because of the caustic mentioned earlier. Another 

perturbation method such as the cone perturbation method [9] could be used. 

However, one will not gain too much from that, because the creeping wave term 

will stop at 8 = 15' when it hits the tip of the ogive. Therefore, the RCS of the 

strap is computed at 8 = 0' then the RCS of the lit part of the strap is computed 

alone beginning at 8 = 2 or 3 degrees (i.e. outside the caustic region). One should 

not pay much attention to the discontinuity appearing in the RCS pattern, because 

one is interested in the RCS envelope rather than the exact RCS pattern. Figure 

33 shows the RCS of the same strap at 10GHz. The envelope of the RCS of the 

strap increased by about 8 dB with the increase of the frequency from 4 to 10 

GHz. This can also be seen in the frequency domain plots as shown in Figure 15. 

4.2 Empirical Design Formulas 

In this section, the computed results given in the previous section and the 

analytical expressions given in chapter I11 are used to establish some formulas 

which relates the RCS of the strap shown in Figure 34 to the different parameters 

of the problem. Such formulas are useful in designing and using the st<raps as a 

target support structure. 

Lai and Burnside [2] provided a formula which relates the RCS of a strap in 

free space to its thickness, dielect.ric constant. and the operating frequency. That 
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formula stated that the RCS of the strap has (T)1*7 x ( ~ r ) ~ * ' ~  dependence. It can 

be seen that the results given in the previous section has the same dependence. 

For 8, = 0, Equation (3.39) along with the computed results of Section 4.1 

are used to obtain the following equation: 

a,(O) = 0.833 f - 53.084 + 10  log(^^)^.'^ + 10 l ~ g ( T ) ' * ~  

+ 20 log(L,) (4.2) 

where 

~ ~ ( 0 )  is the RCS of the strap in dBsm at Os = 0, and 8, is the incidence 

angle as shown in Figure 34 

f is the frequency in GHz 

T is the thickness in inches 

L, is the strap length, for example L, = 27ra for the strap in Figure 34, and 

is the dielectric constant. 

For 8, outside the caustic region, say Os 2 3", Equation (3.21) along with the 

results of Section 4.1 are used to obtain that 

with 

where 
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Q, is the stationary point in the lit part of the strap, it is taken to be in 

the middle between the two edges of the strap 

R1 is the radius of curvature of the surface of the structure at Q, in a 

direction parallel to the edges of the strap 

R2 is the radius of curvature of the surface at Q, in a direction perpendicular 

to the edges of the strap. 

H L ( S )  is the Fock radiation function, it is defined in chapter 11, and 

8, is the angle between the observation direction and the principal plane of 

the strap, as shown in Figures 34 through 36. 

Note that the RCS envelope of the strap does not depend on the width of the 

strap; therefore, the width does not appear in Equations (4.2) and (4.3). Also, 

note that Equations (4.2) and (4.3) are good for general convex structures, and 

the ogive is chosen for demonstration purposes only. 

Now, using Equations (4.2) and (4.3) the RCS envelope of the strap versus f ,  

e,, T ,  C T ,  R1, and R2 may be found. Equation (4.2) is used to find the RCS at 

B, = Oo, and Equation (4.3) is used to plot the RCS envelope for 8, outside the 

caustic region, say 8, 2 3O. For 0" 5 8, 5 3O, the RCS plot can be simply taken 
, 

to be a constant value. 

Figures 37 through 39 show the RCS envelope of the strap shown in Figure 

34 with a = 2.37" and b = 18". Figure 37 shows the nose-on RCS envelope of the 

strap versus frequency with T = 0.002", 0.004" and 0.006", and ET = 2.3. Figure 

38 shows the RCS envelope with = 2 , 3  and 4, and T = 0.004". Figure 39 shows 

the RCS envelope of the strap versus the observation angle, 8, with T = 0.002" 

and 0.004", and cT = 2.0 and 4.0. 
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Figure 36: The angle 8, with respect to the principle plane of the strap. 
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Figure 37: Nose-on RCS envelope of a strap wrapped around an ogive versus 
frequency with a = 2.37", b = 18", c p  = 2.3 and T = 0.002", 0.004" and 0.006". 
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Figure 38: Nose-on RCS envelope of a strap wrapped around an ogive versus 
frequency with a. = 2.37", b = 18", T = 0.004" and E,. = 2, 3 and 4. 
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Figure 39: RCS envelope of a strap wrapped around an ogive with a = 2.37", 
b = 18", T = 0.002",0.004" and eT = 2, 4 and f=4GHz. 
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Now , Equation (4.3) is used to estimate the the RCS envelope of the straps 

shown in Figure 35. It is seen that the straps are oriented in a way which minimizes 

its RCS. That orientation makes the backscattering field from the straps appear 

to be coming from two stationary points, these two stationary points are shown in 

Figure 35. One can see that the dominating contribution to the RCS of the straps 

is coming from the leading stationary point because it lies in the lit region; while, 

the other stationary point lies in the shadow region. 

Figure 40 shows the RCS of the leading strap with a = 5", b = 20'' and 

2, = lo", where 2, defines the stationary point location. Using the equations 

given in Section 3.2, one finds that R1 = 3.8", R2 = 42.5" and 0, = 13.6'. The 

RCS of the leading strap is plotted for T = 0.002" and 0.004", and el. = 2.0 

and 4.0. The contribution from the stationary point in the shadow region is not 

expected to have significant effect on the total RCS; therefore, the plot in Figure 

40 is considered to be a reasonable first-order estimate for the RCS envelope of the 

straps shown in Figure 35. 

The basic conclusions of this report are given in the next chapter. 
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Figure 40: RCS envelope of the strap shown in Figure 35 versus frequency with 
a = 5", b = 20", 2, = lo", T = 0.002',0.004" and cT = 2,4. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

A method to calculate the electromagnetic scattered fields from a thin dielec- 

tric strap wrapped around a convex, perfectly conducting surface was presented. 

This was accomplished using a moment method technique to find the current ex- 

cited within the strap by an incident plane wave. Then, Uniform Geometrical 

Theory of Diffraction, along with a stationary phase integration method was used 

to compute the fields scattered by the strap. This method was used to evaluate 

the RCS of a strap wrapped around a convex conducting structure. The coniputed 

RCS values showed reasonable agreement with measured results. It was shown that 

for low frequencies, say below lGHz ,  the strap scattering is very low. It increases 

with an increase in frequency, but it is still low at high frequencies. The RCS of 

the strap can be reduced by reducing the thickness or the dielectric constant of the 

strap. So a trade off can be made between the RCS of the strap and its physical 

properties. The H-plane RCS pattern is known to be much lower than the E-plane 

pattern; therefore, only the worst case, the E-plane pattern, was presented in this 

study. 

Some empirical design formulas, which can help in designing the stxaps, are 

also given. These formulas are good for general convex structures and are expected 

to give resonable estimates for the RCS of the dielectric straps when used as a 

target support structure. 
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APPENDIX A 

RAY DIVERGENCE FACTOR AND CAUSTIC DISTANCE 

The ray divergence factor {w used in Equation (3.22) can be found as 

follows. First, we define the source location and the radiation direction. Next, we 

find the geodesic path that the ray will travel along it to reach the diffraction point, 

let the path length be L. At the diffraction point the radiation direction t̂  must 

be tangent to the surface and aligned with the geodesic path as shown in Figure 

41. The next step is to draw another geodesic path which has a length equal to L 

and passes through the source location making an angle d r  with the first geodesic 

path. The last step is to find the vector t̂ " which is tangent to the surface and 

aligned with the second geodesic path at its end. Then the ray divergence factor 

is given by 

The above steps can be implemented numerically [lo]. However, another 

approximate, but easier, method is followed here. This method is called the per- 

turbation method [9]. The cylinder perturbation method is used here. It is good 

enough when the source exists near the region 2 = 0 on the ogive. The method 

uses some of the equations governing the geodesic path on a cylinder assuiiiiiig 

that they are valid for the ogive. 

The circular cylinder shown in Figure 42(a) is a developed surface; therefore, 

the geodesic path, Q'Q, is a straight line on the unfolded planer surface. As shown 
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Figure 41: Creeping wave radiation from source over an ogive 
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(a) True Cylinder 

(b) Unfolded Planar Surface 

Figure 42: Geodesic path on a developed cylinder. 
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Figure 43: Circular cylinder perturbation. 

in Figure 42(a) the geodesic unit tangent t̂  is given by 

where 

6 = -s in4 3i. + cos4 . (44.3) 

An important thing to put in mind is that, along a given geodesic path the angle 

y, shown in Figure 42(b), is constant. 

Now, as shown in Figure 43, the cylinder is perturbed by bending it around 

the ogive and the geodesics are to be resolved on this perturbed cylinder model. 

Then, using the fact that y is constant along a given geodesic path, Q'Q, on the 

perturbed cylinder one obtains the geodesic equation 
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Figure 44: The different parameters for the geodesic path. 

where se and Sr are as shown in Figure (A.4). And 

sT = a +  . 

The point Q is defined by v and 4. v is equal to the observation angle 8, and + is 

taken to be zero. Now, since the cylinder is a developed surface 

Then 

By differentiating both sides of the above equation with respect to 6 and after 

simplification one gets 
2 a L2 

- csc (7)d-J = -+$ . 
5e 
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d4 can be found from the above expression for any dy .  

Now, one can simply see that 

let 

then, one gets 

To find du due to a small dy 

3e = ru - t' 

I t' u = -  
r 

we use Equation (A.4). 

se r ( v  - V I )  

3r 

r (u  + dv - u') 

tany = - = 
a4 

d'Y) = a ( 4  + d4)  , and 

( A 4  

(-4.9) 

(A.lO) 

(A. l l )  

(A.12) 

a 
r 

du = -d+ tan(y + d y )  - u + u' . (A.13) 

Now, the adjacent diffraction point Q" : (4 + d4,  u + du) is known and 

i" = t̂: cos(y + d y )  + iz sin(y + dy)  (A.14) 

i = i,. cos(y) + le sin(y) (A.15) 

where I! and t̂ , are functions of the point location, they are given in Section 3.2. 

The ray divergence factor is then given by 

(A.16) 

where the angle dy can be conveniently chosen as 1'. 

The caustic distance p i  is easily found. It is the distance between the diffrac- 

tion point (4, u )  on the ogive and the intersection point, of t^ and t̂ " when they pass 

through (4 ,  u )  and ( 4  + d$, u + du) ,  resyedively. 
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